Crystal Structure of $\boldsymbol{n}-\mathrm{Bu}_{3} \mathrm{Sn}^{+} \mathrm{CB}_{11} \mathrm{Me}_{\mathbf{1 2}}{ }^{-}$

Ilya Zharov, Benjamin T. King, Zdeněk Havlas, ${ }^{\dagger}$
Arthur Pardi, and Josef Michl*
Department of Chemistry and Biochemistry University of Colorado, Boulder, Colorado 80309-0215

Received April 19, 2000

The only structurally characterized species among the extremely electrophilic $\mathrm{R}_{3} \mathrm{E}^{+}$ions ${ }^{1-7}(\mathrm{R}=$ alkyl, $\mathrm{E}=\mathrm{Si}, \mathrm{Ge}, \mathrm{Sn}, \mathrm{Pb})$ are the adducts of $\mathrm{R}_{3} \mathrm{Si}^{+}$to toluene ${ }^{2}$ or to halogenated carboranyl anions, ${ }^{3}$ and a related delocalized cyclotrigermenium cation. ${ }^{4}$ Crystallization is difficult, as adducts form even with weakly nucleophilic solvents, and solubility is often too low in sufficiently inert ones. Reaction of the strong neutral oxidant, ${ }^{8} \mathrm{CB}_{11} \mathrm{Me}_{12}{ }^{\circ}$, with a neutral $\mathrm{R}_{3} \mathrm{E}$-containing precursor in an inert solvent to produce the $\mathrm{R}_{3} \mathrm{E}^{+}$salt of the solubilizing ${ }^{9}$ and only weakly nucleophilic ${ }^{8} \mathrm{CB}_{11} \mathrm{Me}_{12}{ }^{-}$anion ${ }^{10}$ suggests a general solution to this problem. ${ }^{11}$ We report the single-crystal X-ray structure of $n-\mathrm{Bu}_{3} \mathrm{Sn}^{+} \mathrm{CB}_{11} \mathrm{Me}_{12}{ }^{-}$(1) prepared in this manner (Scheme 1).

Two equivalents of $\mathrm{CB}_{11} \mathrm{Me}_{12}{ }^{\circ}$ reacted rapidly with $n-\mathrm{Bu}_{6} \mathrm{Sn}_{2}$ in dry pentane to form a white solid, identified as $\mathbf{1}$ by spectroscopy, ${ }^{12,13}$ by trapping with PhMgBr , which afforded $n-\mathrm{Bu}_{3} \mathrm{SnPh}^{14}$ in 91% isolated yield, and by trapping with $\mathrm{Et}_{2} \mathrm{O}$, which yielded the known ${ }^{7} n-\mathrm{Bu}_{3} \mathrm{SnOEt}_{2}{ }^{+}$cation. ${ }^{13}$

X-ray diffraction analysis ${ }^{13}$ of a single crystal of $\mathbf{1}$ grown from hexane revealed a tributylstannyl cation ${ }^{13}$ weakly coordinated to methyl groups of two $\mathrm{CB}_{11} \mathrm{Me}_{12}{ }^{-}$anions in a trigonal bipyramid (Figure 1A). Each anion is coordinated to two cations through two antipodal methyl groups in infinite columns of alternating $n-\mathrm{Bu}_{3} \mathrm{Sn}^{+}$and $\mathrm{CB}_{11} \mathrm{Me}_{12}{ }^{-}$ions, ${ }^{13}$ similar to those of numerous covalent $\mathrm{R}_{3} \mathrm{SnX}$ compounds $(\mathrm{R}=\text { alkyl, } \mathrm{X}=\mathrm{O}, \mathrm{N}, \mathrm{S}, \mathrm{Cl} \text {, etc. })^{15}$ in which Sn and X atoms alternate. In all previously known compounds of this type X was a strong ligand and the $\mathrm{Sn}-\mathrm{X}$ distance was short ($2.1-2.4 \AA$ for $\mathrm{X}=\mathrm{O}, \mathrm{N}$ and $2.3-2.6 \AA$ for $\mathrm{X}=\mathrm{S}, \mathrm{Cl})$. Perpendicular to the columns, 1 packs in hexagonal sheets, where every other vertex of a hexagon contains an Sn atom (Figure 1B). The edges are formed by n-Bu chains, and the central holes are filled with $\mathrm{CB}_{11} \mathrm{Me}_{12}{ }^{-}$.

[^0]

Figure 1. Structure of $n-\mathrm{Bu}_{3} \mathrm{Sn}^{+} \mathrm{CB}_{11} \mathrm{Me}_{12}{ }^{-}$(1). Thermal ellipsoids are at 50%. Hydrogen atoms and one component of the disordered butyl groups are omitted for clarity, Sn atoms are red, C atoms are black, B atoms are green. (A) Part of an infinite column of alternating cations and anions. (B) View of the crystal packing of $\mathbf{1}$ along a direction slightly off the column axis. (C) Optimized (B3LYP/SDD) geometry of the $\left[\mathrm{CB}_{11} \mathrm{Me}_{12}{ }^{-} \mathrm{Me}_{3} \mathrm{Sn}^{+} \mathrm{CB}_{11} \mathrm{Me}_{12}{ }^{-}\right]$ion triple.

Scheme 1

The interaction of the $n-\mathrm{Bu}_{3} \mathrm{Sn}^{+}$cation with two axially disposed $\mathrm{CB}_{11} \mathrm{Me}_{12}{ }^{-}$methyl groups in $\mathbf{1}$ is weak but clearly present: (i) The average $\mathrm{Sn}-\mathrm{C}$ distance is $2.81 \AA$, much longer than a covalent $\mathrm{Sn}-\mathrm{C}$ bond $\left(2.14 \AA^{15}\right)$, but much shorter than the sum $(4.17 \AA$) of the van der Waals radii of a methyl (2.0 \AA^{16}) and tin $\left(2.17 \AA^{15}\right)$. (ii) The sum of the $\mathrm{C}_{\alpha}-\mathrm{Sn}-\mathrm{C}_{\alpha}$ angles is 353.1° and the Sn atom is $0.32 \AA$ out of the plane of the C_{α} atoms. The $\mathrm{Sn}-\mathrm{C}_{\alpha}$ bond length is $2.07 \AA$, shorter than a normal $\mathrm{Sn}\left(\mathrm{sp}^{3}\right)-\mathrm{C}$ bond length $\left(2.14 \AA^{15}\right)$ and even the usual $\mathrm{Sn}-\mathrm{C}$ bond

Table 1. B3LYP/SDD Results for $\left[\mathrm{Me}_{3} \mathrm{Sn}^{+} \mathrm{CB}_{11} \mathrm{Me}_{12}{ }^{-}\right]$Ion Pairs and the $\left[\mathrm{CB}_{11} \mathrm{Me}_{12}{ }^{-} \mathrm{Me}_{3} \mathrm{Sn}^{+} \mathrm{CB}_{11} \mathrm{Me}_{12}{ }^{-}\right.$] Ion Triple

		position ${ }^{\text {a }}$					
		none	12 (B)	7 (B)	2 (B)	1 (C)	9,2 (B,B) ${ }^{\text {b }}$
$\Delta E,{ }^{c} \mathrm{kcal} / \mathrm{mol}$		-	0	2.8	9.0	22.4	-
$d(\mathrm{Sn}-\mathrm{C}), \AA$		-	2.44	2.45	2.48	2.79	2.74, 2.98
$d(\mathrm{C}-\mathrm{B}), \AA$		1.61	1.70	1.70	1.68	1.53 (C-C)	1.61, 1.63
$\angle \mathrm{SnCB}$, deg		-	176.4	178.2	173.4	144.0 (SnCC)	174.5 (SnCC)
$\sum \angle \mathrm{C}_{\alpha} \mathrm{SnC}_{\alpha}$, deg		-	346.9	348.1	349.5	347.4	359.5
$\angle \mathrm{BCH},{ }^{\text {d }}$ deg		109.5	97.3	98.0	99.0	109.0	106.9
$\delta\left(\mathrm{Me}_{3} \mathrm{Sn}^{+}\right),{ }^{\text {e }} \mathrm{e}$		-	+0.75	+0.76	+0.78	+0.86	-
vertex (CH_{3}) charge, , e		-0.09 (-0.31)	-0.07 (-0.29)	-0.09 (-0.29)	-0.07 (-0.29)	-0.06 (-0.29)	-
	7-11	-0.15 (-0.30)	-0.14 (-0.28)	-0.13 (-0.28)	-0.13 (-0.28)	-0.13 (-0.28)	-
	2-6	$+0.11(-0.31)$	+0.14 (-0.29)	+0.13 (-0.29)	$+0.13(-0.30)$	+0.11 (-0.31)	-
	1	$-0.69(+0.06)$	$-0.68(+0.08)$	$-0.67(+0.07)$	$-0.69(+0.06)$	$-0.72(+0.04)$	-

${ }^{a}$ Position of the $\mathrm{Me}_{3} \mathrm{Sn}^{+}$cation in the ion pair. ${ }^{b}$ The ion triple. ${ }^{c}$ Relative energy. ${ }^{d}$ Average. ${ }^{e}$ Ion charge from NBO analysis. ${ }^{f}$ Average sum of charges on B, C, and $\mathrm{H}(\mathrm{C}$ and H$)$ atoms on a vertex.
length in $\mathrm{R}_{3} \operatorname{SnF}\left(2.10 \AA^{15}\right.$), as anticipated for a near sp^{2} hybridization. The distance between the C atom of the coordinating methyl and the adjacent cage atom is $1.61 \AA$, equal to the average $\mathrm{B}-\mathrm{C}$ bond length in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NMe}_{2}{ }^{+} \mathrm{CB}_{11} \mathrm{Me}_{12}{ }^{-10}$ and the crystallographic diameter ${ }^{13}$ of the icosahedral core of $\mathrm{CB}_{11} \mathrm{Me}_{12}{ }^{-}$ has the standard ${ }^{10} 3.27 \AA$ value.

Only the average $\mathrm{Sn}-\mathrm{C}$ and $\mathrm{B}-\mathrm{C}$ distances can be determined, owing to the $P 6_{3} / m m c$ symmetry of the disordered crystal, and the coordinating pair of anion vertices $(1,12$ or 2,9$)$ is not identified. ${ }^{13,17}$ The relative coordinating ability of the four nonequivalent vertices in $\mathrm{CB}_{11}{ }^{-}$is under debate, and coordination through positions 12^{18} and 7^{3} (symmetry equivalent to 9) is known. Purely electrostatic considerations (ref 19 and Table 1) do not differentiate the vertices clearly. Electrophilic interactions with the vertices are generally believed to decrease in the reactivity order, $12>7-11>2-6 \gg 1$, and the B3LYP/SDD ${ }^{13}$ ion-pairing energies for four optimized isomers of an isolated $\mathrm{Me}_{3} \mathrm{Sn}^{+}$ $\mathrm{CB}_{11} \mathrm{Me}_{12}{ }^{-}$ion pair with $\mathrm{Me}_{3} \mathrm{Sn}^{+}$next to position 1, 2,7 , or 12 follow this order (Table 1). The most stable 12 -isomer is calculated to have the shortest $\mathrm{Sn}-\mathrm{CH}_{3}$ and the longest $\mathrm{B}-\mathrm{CH}_{3}$ distance, the flattest $\mathrm{B}-\mathrm{CH}_{3}$ group, the most pyramidalized $\mathrm{Me}_{3} \mathrm{Sn}^{+}$cation, and the most inter-ion charge transfer. In 2-, 7-, and 12-methyl coordination the Sn atom lies near a 5 -fold icosahedron axis, and the stabilizing interaction is both electrostatic and donor-acceptor. $\mathrm{Me}_{3} \mathrm{Sn}^{+}$interacts much less with the 1-methyl group, with the Sn atom tilted 36° off the axis toward the 2-methyl group.

Assuming additivity, 2,9 dicoordination is $10.6 \mathrm{kcal} / \mathrm{mol}$ better than 1,12 dicoordination, and geometrical and energetic considerations both suggest that the infinite columns in Figure 1 are formed by random 2,9 and 9,2 dicoordination. The B3LYP/SDD optimized structure of the nearly coaxial ${ }^{13}\left[\mathrm{CB}_{11} \mathrm{Me}_{12}{ }^{-} \mathrm{Me}_{3} \mathrm{Sn}^{+}\right.$ $\mathrm{CB}_{11} \mathrm{Me}_{12}{ }^{-}$] ion triple with coordination through positions 2 and 9 of the anion (Figure 1C) supports this conclusion. The two nonequivalent $\mathrm{Sn}-\mathrm{C}$ distances are $2.74 \AA(9-\mathrm{Me})$ and $2.98 \AA$ (2-Me). The average, $2.86 \AA$, exceeds slightly the average 2.81 $\AA \mathrm{Sn}-\mathrm{C}$ distance in the crystal of $\mathbf{1}$, as expected. ${ }^{20}$ The calculated $\mathrm{B}-\mathrm{CH}_{3}$ distances are $1.63 \AA(9-\mathrm{Me})$ and $1.61 \AA(2-\mathrm{Me})$, vs 1.61 \AA in the crystal of $\mathbf{1}$. The pyramidalization of the cation is

[^1]underestimated (Sn atom $0.08 \AA$ out of the C_{α} plane; in crystal, $0.32 \AA$).

Metal cation-alkane complexation is of current interest, ${ }^{21}$ and crystal structures with a cationic transition metal coordinated to a methyl group are known. ${ }^{22}$ The $n-\mathrm{Bu}_{3} \mathrm{Sn}^{+}$cation seems to coordinate to the methyl carbon and act as if it were initiating a backside $\mathrm{S}_{\mathrm{E}} 2$ displacement ${ }^{23}$ (Table 1); the reaction of $t-\mathrm{Bu}_{6} \mathrm{Si}_{2}$ with $\mathrm{CB}_{11} \mathrm{Me}_{12}{ }^{\circ}$, expected to yield $t-\mathrm{Bu}_{3} \mathrm{Si}^{+} \mathrm{CB}_{11} \mathrm{Me}_{12}{ }^{-}$, yields $t-\mathrm{Bu}_{3} \mathrm{SiMe}$, presumably because the now more exothermic $\mathrm{S}_{\mathrm{E}} 2$ substitution proceeds to completion, in analogy to the inverse of methide anion abstraction by $\mathrm{R}_{3} \mathrm{~B}$ from $\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}{ }^{24}$ and $[t-\mathrm{BuN}-$ $\left.\left.o-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{O}\right] \mathrm{ZrMe}_{2} .{ }^{25}$

Ion aggregation via methyl coordination apparently also occurs in cyclohexane solution of $\mathbf{1}$. Its ${ }^{119} \mathrm{Sn}$ NMR chemical shift, 454.3 $\mathrm{ppm}^{26}\left[2 \mathrm{D}\left({ }^{119} \mathrm{Sn},{ }^{1} \mathrm{H}\right) \mathrm{HSQC}\right],{ }^{13}$ lies far upfield from the 806 ppm reported ${ }^{5}$ for the trimesitylstannylium in benzene and the 1700 ppm estimated ${ }^{6}$ for a gaseous trialkylstannylium ion. The signal of $\mathbf{1}$ is broad ($\sim 800 \mathrm{~Hz}$), suggesting exchange processes in ion aggregates. The ${ }^{1} \mathrm{H}$ NMR shift of the α protons in $n-\mathrm{Bu}_{3} \mathrm{Sn}^{+}$ of $\mathbf{1}$ in cyclohexane (1.83 ppm), downfield from that of its analogue in $n-\mathrm{Bu}_{3} \mathrm{Sn}^{+} \mathrm{B}\left[3,5-\left(\mathrm{F}_{3} \mathrm{C}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right]_{4}{ }^{-}$in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(1.65 \mathrm{ppm})$, ${ }^{7}$ suggests a reduced perturbation of stannylium character in the former. The ${ }^{11} \mathrm{~B}$ NMR of $\mathbf{1}^{12}$ is essentially identical with that of free $\mathrm{CB}_{11} \mathrm{Me}_{12}{ }^{-} .{ }^{10}$

The scope of the present approach to crystalline salts of $\mathrm{R}_{3} \mathrm{E}^{+}$ and similar cations is limited by their low solubility in inert solvents and by the coordinating ability and chemical reactivity of the $\mathrm{CB}_{11} \mathrm{Me}_{12}{ }^{-}$anion. We are presently examining other highly alkylated radicals of the CB_{11} family.

Acknowledgment. This work is dedicated to Prof. V. Horák and Prof. P. Zuman on the occasion of their 75th birthday. We are grateful to Dr. B. C. Noll (University of Colorado, Boulder), Prof. K. R. Seddon (The Queen's University of Belfast, UK), and Prof. G. F. R. Parkin (Columbia University) for discussions. CPU time on NEC-SX4 (Grant No. LB98202, project INFRA2, Ministry of Education, Czech Republic) and SUN UltraEnterprise (Institute of Physics, Academy of Sciences, Czech Republic), and support by the National Science Foundation (CHE-9819179 and CHE9709195) are gratefully acknowledged.

Supporting Information Available: Details of characterization of 1, tables of crystal data, structure solution and refinement, atomic coordinates, bond lengths and angles, and anisotropic thermal parameters for 1 (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.
JA001374V
(21) (a) Hall, C.; Perutz, R. N. Chem. Rev. 1996, 96, 3125. (b) Shilov, A. E.; Shul'pin, G. B. Chem. Rev. 1997, 97, 2879 and references therein.
'(22) (a) Burns, C. J.; Andersen, R. A. J. Am. Chem. Soc. 1987, 109, 5853. (b) Stults, S. D.; Andersen, R. A.; Zalkin, A. J. Am. Chem. Soc. 1989, 111, 4507.
(23) Similar substitution by carbenium ions is known: (a) Liu, A. H.; Muray, R. C.; Dewan, J. C.; Santarsiero, B. D.; Schrock, R. R. J. Am. Chem. Soc. 1987, 109, 4282. (b) Brookhart, M.; Liu, Y.; Goldman, E. W.; Timmers, D. A.; Williams, G. D. J. Am. Chem. Soc. 1991, 113, 927.
(24) Deck, P. A.; Marks, T. J. J. Am. Chem. Soc. 1995, 117, 6128.
(25) Schrock, R. R.; Baumann, R.; Reid, S. M.; Goodman, J. T.; Stumpf, R.; Davis, W. M. Organometallics 1999, 18, 3649.
(26) Cf. 461.2 ppm in the solid: Orendt, A. M.; Zharov, I.; Grant, D. M.; Michl, J. Unpublished results.

[^0]: ${ }^{\dagger}$ Permanent address: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague 6, Czech Republic.
 (1) (a) Lickiss, P. D. In The Chemistry of Organic Silicon Compounds, 2nd ed.; Rappoport, Z., Apeloig, Y., Eds.; John Wiley \& Sons: Chichester, UK, 1998; p 557. (b) Reed, C. A. Acc. Chem. Res. 1998, 31, 325. (c) Lambert, J. B.; Zhao, Y. Angew. Chem., Int. Ed. Engl. 1997, 36, 400.
 (2) Lambert, J. B.; Zhang, S.; Ciro, S. M. Organometallics 1994, 13, 2430.
 (3) Xie, Z.; Manning, J.; Reed, R. W.; Mathur, R.; Boyd, P. D.; Benesi, A.; Reed, C. A. J. Am. Chem. Soc. 1996, 118, 2922.
 (4) Sekiguchi, A.; Tsukamoto, M.; Ichinohe, M. Science 1997, 275, 60.
 (5) Lambert, J. B.; Zhao, Y.; Wu, H.; Tse, W. C.; Kuhlman, B. J. Am. Chem. Soc. 1999, 121, 5001.
 (6) Ashradi, M.; Johnels, D.; Edlund, U. Chem. Commun. 1996, 1279.
 (7) Kira, M.; Oyamada, T.; Sakurai, H. J. Organomet. Chem. 1994, 471, C4.
 (8) King, B. T.; Noll, B. C.; McKinley, A. J.; Michl, J. J. Am. Chem. Soc. 1996, 118, 10902.
 (9) Pospíšil, L.; King, B. T.; Michl, J. Electrochim. Acta 1998, 44, 103.
 (10) King, B. T.; Janoušek, Z.; Grüner, B.; Trammell, M.; Noll, B. C.; Michl, J. J. Am. Chem. Soc. 1996, 118, 3313.
 (11) The production of metal cations by oxidation of metal-metal bonds is precedented; cf. refs 1, 4, 8, and Ichinohe, M.; Fukui, H.; Sekiguchi, A. Chem. Lett. 2000, 600.
 (12) ${ }^{119} \mathrm{Sn}$ NMR (cyclohexane- d_{12}): $\delta 454.3 .{ }^{1} \mathrm{H}$ NMR (cyclohexane- d_{12}): $\delta 1.83\left(6 \mathrm{H}, \mathrm{bs}, \alpha-\mathrm{CH}_{2}\right), 1.43\left(6 \mathrm{H}, \mathrm{m}, \beta-\mathrm{CH}_{2}\right), 0.98\left(6 \mathrm{H}, \mathrm{m}, \gamma-\mathrm{CH}_{2}\right), 0.88$ $\left(9 \mathrm{H}, \mathrm{t}, \delta-\mathrm{CH}_{3}\right), 0.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{C}_{1}\right),-0.25\left(15 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{B}_{7-11}\right),-0.38$ $\left(15 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{B}_{2-6}\right),-0.46\left(3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{B}_{12}\right) .{ }^{11} \mathrm{~B}$ NMR (cyclohexane- d_{12}): δ $-0.99 \mathrm{ppm}\left(\mathrm{B}_{12}\right),-8.09\left(\mathrm{~B}_{7-11}\right),-8.49\left(\mathrm{~B}_{2-6}\right)$. ESI/MS (acetonitrile); $n-\mathrm{Bu}_{3} \mathrm{Sn}^{+}$(base peak at $m / e 290$), $\mathrm{CB}_{11} \mathrm{Me}_{12}{ }^{-}$(base peak at $m / e ~ 311$), both with the expected isotopic distribution. IR (solid, reflection mode, gold surface): $578,689,769,862,959,1069,1142,1249,1291,1377,1463,2846$, 2866, 2925, $2963 \mathrm{~cm}^{-1}$. UV (hexane): end absorption starting at $\sim 245 \mathrm{~nm}$.
 (13) See Supporting Information.
 (14) Bumagin, N. A.; Gulevich, Y. V.; Beletskaya, I. P. Bull. Acad. Sci. USSR Div. Chem. Sci. 1984, 33, 1044.
 (15) Davies, A. G. Organotin Chemistry; VCH: Weinheim, 1997.

[^1]: (16) (a) Bondi, A. J. Phys. Chem. 1964, 68, 441. (b) Pauling, L. The Nature of the Chemical Bond; Cornel University Press: Ithaca, NY, 1960.
 (17) The n-butyl groups exist in two orientations, with equally occupied components on either face of a crystallographic mirror plane perpendicular to the 6_{3} axis. This plane also relates the two coordinating methyl groups. Refinement in the noncentrosymmetric space group $P 6_{3} m c$, which lacks this mirror plane, reveals the same disorder. A 5 -fold axis of the nearly regular icosahedron, defined by two antipodal cluster atoms and their methyl groups, coincides with the 6_{3} axis of the crystal, resulting in significant disorder of the off-axis 10 cluster atoms and 10 methyl groups.
 (18) (a) Crowther, D. J.; Borkowsky, S. L.; Swenson, D.; Meyer, T. Y.; Jordan, R. F. Organometallics 1993, 12, 2897 and references therein. (b) Ivanov, S. V.; Lupentti, A. J.; Miller, S. M.; Anderson, O. P.; Solntsev, K. A.; Strauss, S. H. J. Am. Chem. Soc. 1998, 120, 4224.
 (19) (a) Zahradník, R.; Balaji, V.; Michl, J. J. Comput. Chem. 1991, 12, 1147. (b) McKee, M. L. J. Am. Chem. Soc. 1997, 119, 4220.
 (20) See, for instance, p 4348 in Allinger, N. L.; Miller, M. A.; VanCatledge, F. A.; Hirsch, J. A. J. Am. Chem. Soc. 1967, 89, 4345.

